metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42:24D6, C6.1292+ 1+4, (C2xQ8):13D6, D6:C4:6C22, C22:C4:21D6, C23:2D6:25C2, D6:D4:26C2, (C4xC12):29C22, (C2xD4).112D6, C4.4D4:16S3, (C6xQ8):16C22, C42:7S3:30C2, C2.53(D4oD12), (C2xC12).83C23, (C2xC6).227C24, C2.77(D4:6D6), C12.23D4:24C2, (S3xC23):12C22, C3:2(C24:C22), (C4xDic3):37C22, (C2xDic6):10C22, (C6xD4).212C22, (C2xD12).34C22, (C22xC6).57C23, C23.59(C22xS3), C23.11D6:43C2, C6.D4:35C22, (C22xS3).99C23, C22.248(S3xC23), (C2xDic3).117C23, (C3xC4.4D4):19C2, (C3xC22:C4):32C22, (C2xC4).200(C22xS3), (C2xC3:D4).65C22, SmallGroup(192,1242)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42:24D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1, dad=ab2, cbc-1=a2b-1, dbd=a2b, dcd=c-1 >
Subgroups: 896 in 260 conjugacy classes, 91 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C2xD4, C2xD4, C2xQ8, C2xQ8, C24, Dic6, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xC6, C22wrC2, C4.4D4, C4.4D4, C4xDic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C2xDic6, C2xD12, C2xC3:D4, C6xD4, C6xQ8, S3xC23, C24:C22, C42:7S3, D6:D4, C23.11D6, C23:2D6, C12.23D4, C3xC4.4D4, C42:24D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2+ 1+4, S3xC23, C24:C22, D4:6D6, D4oD12, C42:24D6
(1 28 7 25)(2 26 8 29)(3 30 9 27)(4 41 10 38)(5 39 11 42)(6 37 12 40)(13 36 19 46)(14 47 20 31)(15 32 21 48)(16 43 22 33)(17 34 23 44)(18 45 24 35)
(1 22 10 13)(2 20 11 17)(3 24 12 15)(4 19 7 16)(5 23 8 14)(6 21 9 18)(25 43 41 46)(26 31 42 34)(27 45 37 48)(28 33 38 36)(29 47 39 44)(30 35 40 32)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 3)(4 6)(7 9)(10 12)(13 21)(14 20)(15 19)(16 24)(17 23)(18 22)(25 37)(26 42)(27 41)(28 40)(29 39)(30 38)(31 44)(32 43)(33 48)(34 47)(35 46)(36 45)
G:=sub<Sym(48)| (1,28,7,25)(2,26,8,29)(3,30,9,27)(4,41,10,38)(5,39,11,42)(6,37,12,40)(13,36,19,46)(14,47,20,31)(15,32,21,48)(16,43,22,33)(17,34,23,44)(18,45,24,35), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,43,41,46)(26,31,42,34)(27,45,37,48)(28,33,38,36)(29,47,39,44)(30,35,40,32), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,6)(7,9)(10,12)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38)(31,44)(32,43)(33,48)(34,47)(35,46)(36,45)>;
G:=Group( (1,28,7,25)(2,26,8,29)(3,30,9,27)(4,41,10,38)(5,39,11,42)(6,37,12,40)(13,36,19,46)(14,47,20,31)(15,32,21,48)(16,43,22,33)(17,34,23,44)(18,45,24,35), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,43,41,46)(26,31,42,34)(27,45,37,48)(28,33,38,36)(29,47,39,44)(30,35,40,32), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3)(4,6)(7,9)(10,12)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38)(31,44)(32,43)(33,48)(34,47)(35,46)(36,45) );
G=PermutationGroup([[(1,28,7,25),(2,26,8,29),(3,30,9,27),(4,41,10,38),(5,39,11,42),(6,37,12,40),(13,36,19,46),(14,47,20,31),(15,32,21,48),(16,43,22,33),(17,34,23,44),(18,45,24,35)], [(1,22,10,13),(2,20,11,17),(3,24,12,15),(4,19,7,16),(5,23,8,14),(6,21,9,18),(25,43,41,46),(26,31,42,34),(27,45,37,48),(28,33,38,36),(29,47,39,44),(30,35,40,32)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,3),(4,6),(7,9),(10,12),(13,21),(14,20),(15,19),(16,24),(17,23),(18,22),(25,37),(26,42),(27,41),(28,40),(29,39),(30,38),(31,44),(32,43),(33,48),(34,47),(35,46),(36,45)]])
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | ··· | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 6E | 12A | ··· | 12F | 12G | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 4 | ··· | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 8 | 8 | 4 | ··· | 4 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | D6 | D6 | 2+ 1+4 | D4:6D6 | D4oD12 |
kernel | C42:24D6 | C42:7S3 | D6:D4 | C23.11D6 | C23:2D6 | C12.23D4 | C3xC4.4D4 | C4.4D4 | C42 | C22:C4 | C2xD4 | C2xQ8 | C6 | C2 | C2 |
# reps | 1 | 2 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 4 | 1 | 1 | 3 | 2 | 4 |
Matrix representation of C42:24D6 ►in GL8(F13)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 6 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 3 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,10,7,0,0,0,0,0,0,6,3,0,0,0,0,0,0,0,0,10,7,0,0,0,0,0,0,6,3],[1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1] >;
C42:24D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_{24}D_6
% in TeX
G:=Group("C4^2:24D6");
// GroupNames label
G:=SmallGroup(192,1242);
// by ID
G=gap.SmallGroup(192,1242);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,219,1571,570,297,192,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations